

US008138117B2

(12) United States Patent

Fryxell et al.

(54) FUNCTIONALIZED SORBENT FOR CHEMICAL SEPARATIONS AND SEQUENTIAL FORMING PROCESS

(75) Inventors: Glen E. Fryxell, Kennewick, WA (US);

Thomas S. Zemanian, Richland, WA

(US)

(73) Assignee: Battelle Memorial Institute, Richland,

WA (US)

(*) Notice: Subject to any disclaimer, the term of this

patent is extended or adjusted under 35

U.S.C. 154(b) by 254 days.

(21) Appl. No.: 12/555,374

(22) Filed: Sep. 8, 2009

(65) **Prior Publication Data**

US 2011/0059845 A1 Mar. 10, 2011

(51) **Int. Cl. B01J 20/26** (2006.01)

(52) U.S. Cl. 502/402

(58) **Field of Classification Search** 502/400–402; 528/10, 28, 61, 68, 69; 422/612; *C08G* 18/32, *C08G* 77/452, 77/62

See application file for complete search history.

(56) References Cited

U.S. PATENT DOCUMENTS

OTHER PUBLICATIONS

Hicks et al., "Controlling the Density of Amine Sites on Silica Surfaces Using Benzyl Spacers," Langmuir 2006, vol. 22, pp. 2676-2681 (Feb. 8, 2006).*

Kanan et al., "Method to Double the Surface Concentration and Control the Orientation of Adsorbed (10) Patent No.: US 8,138,117 B2 (45) Date of Patent: Mar. 20, 2012

(3-Aminopropyl)dimethylethoxysilane on Silica Powders and Glass Slides," Langmuir 2002, vol. 18, pp. 6623-6627 (Jul. 24, 2002).* Acosta et al., "Engineering Nanospaces: Iterqative Synthesis of Melamine-Based Dendrimers on Amine-Functionalized SBA-15 Leading to Complex Hybrids with Controllable Chemistry and Porosity," Advanced Materials 2004, vol. 16, No. 12, pp. 985-989

(Jun. 17, 2004).*
Ford et al., "Engineering nanospaces: ordered mesoporous silicas as model substrates for building complex hybrid materials," Nanotechnology 2005, vol. 16, pp. S458-S475 (May 18, 2005).*
International Search Report/Written Opinion, International Applica-

tion No. PCT/US2010/039533, International Filing Date Jun. 22, 1010, Date of mailing Oct. 25, 2010.

Rosenholm, J. M. et al., Wet-Chemical Analysis of Surface Concentration of Accessible Groups on Different Amino-Functionalized Mesoporous SBA-15 Silicas, Chemistry of Materials, vol. 19, No. 20, Sep. 7, 2007, pp. 5023-5034.

Knowles, G. P. et al., Diethylenetriamine[propyl(silyl)]-Functionalized (DT) Mesoporous Silicas as CO2 Adsorbents, Industrial & Engineering Chemistry Research, vol. 45, No. 8, Feb. 25, 2006, pp. 2626-2533.

Reynhardt, J. P. K. et al., Periodic Mesoporous Silica-Supported Recyclable Rhodium-Complexed Dentrimer Catalysts, Chemistry of Materials, vol. 16,, No. 21, Sep. 18, 2004, pp. 4095-4102.

Yoshitake, H. et al., Polyamine-functionalized mesoporous silicas: Preparation, structural analysis and oxyanion adsorption, Microporous and Mesoporous Materials, Elsevier Science Publishing, New York, U.S., vol. 85, No. 1-2, Oct. 23, 2005, pp. 183-194.

(Continued)

Primary Examiner — Stanley Silverman
Assistant Examiner — Daniel Berns
(74) Attorney, Agent, or Firm — James D. Matheson

(57) ABSTRACT

A highly functionalized sorbent and sequential process for making are disclosed. The sorbent includes organic short-length amino silanes and organic oligomeric polyfunctional amino silanes that are dispersed within pores of a porous support that form a 3-dimensional structure containing highly functionalized active binding sites for sorption of analytes.

21 Claims, 5 Drawing Sheets

